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Abstract—A new approach for quantitative analysis of fragmentation for brittle materials is
developed with the aid of axioms of continuum mechanics, fracture mechanics and topology. The
principles of energy balance are used to establish the field equations for the surface and volume of
a fragment which is homeomorphic to a sphere. The global and local geometric constraints on
fragmentation are unveiled as a deterministic description of a crack network by use of the Euler
theorem and energy transformation. Several physical phenomena are revealed in the present
research. A new physical parameter, the dissipative rate of surface energy, is derived which provides
a theoretical basis for understanding the latest experimental results. One of the applications of the
model is to understand some basic parameters for formation of a branching crack network with a
single source. Theoretical analysis is in very good agreement with experimental results.

1. INTRODUCTION

The comprehensive description and quantitative estimation of fragmentation for brittle
materials caused by dynamic loading is a challenging topic researchers have faced in the
mechanics field for some time. Presently, the fragmentation process is no longer limited to
large scale destructive purposes as in mining, civil and defense engineering. It can also be
seen in manufacturing during the cutting process of brittle materials by abrasive jet [e.g.
Gulden (1979)]. Also research on the collisional fragmentation damage of satellites caused
by debris is emphasized by McKnight (1991). These examples suggest the increasing need
for accurate quantitative analysis of fragmentation. Furthermore, from the standpoint of
crack network formation, a similar fragmentation process in solid materials is also observed
on the micro-level during material failure and deformation (Meakin, 1991). To some degree,
examination of crack network formation may provide insight into the intrinsic relationship
between the mechanism of microcrack formation and the macro-failure of materials.
From the point of view of continuurm mechanics, any attempt to make a quantitative
analysis of fragmentation parameters, such as energy consumption or fragment sizes and
their distribution, will encounter several difficulties. First, the instantaneous alteration of a
continuum medium to a large number of fragments with possibly different physical states
brings about great difficulties in the establishment of a problem formulation. Secondly, the
wide diversity of size and shape of fragments provides a complicated pattern for classical
geometric analysis. Thus to a certain degree [as described by Grady (1990)] it is true that
the whole process of fragmentation might be a black box problem because so far very few
physical and geometric constraints have been found on the process. More specifically,
fragmentation my be ascribed as the consequence of the branching, diverging and interacting
of cracks. However, development of dynamic fracture mechanics, a vital stage related to
understanding mechanisms of fragmentation, is still in the initial stage because of formidable
difficulties in theoretical approaches. In fact, many significant investigations have depended
heavily on experimental analysis. For instance, Arakawa and Takahashi (1991a, b) recently
discovered an important criterion for crack branching in their experimental investigation,
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but its physical meaning seems to be unknown. Therefore an essential task for the quan-
titative investigation of fragmentation is to find both the physical and geometric invariants
behind this complicated process.

If the direction of research work on fragmentation 1s shifted from a traditional point
of view to a new one, there is good cause for optimism. First of all, the axioms of mass,
momentum and thermodynamics always hold however complex a fragmenting process is.
In addition, geometrically speaking, the division of a closed surface is not arbitrary but is
deterministic in a topological sense due to constraints imposed by the Euler theorem
(Blackett, 1967). Furthermore, careful observation of a large number of fragments of
various materials indicates that despite big differences in size and shape, the closed surface
of a fragment can be defined to be homeomorphic to a sphere. The fragmentation of a solid
body may be considered as the loss of continuity of a point set in a global sense but local
continuity holds for any subset described by a single fragment.

The application of energy balance may be one of the most important approaches to a
quantitative description of fragmentation which has been used for a long time by many
researchers. The equation for the estimation of fragment size with spherical symmetry by
Grady (1982) may be one of the successful results. It can be verified from general principles
that under certain conditions the Grady model is a rational model and has potential to
become a model for non-spherical problems. Many incisive analyses and an extensive review
on the subject can be found in the published reports given by Grady (1982, 1988, 1990),
Grady and Kipp (1985) and Kipp and Grady (1985). Recently, a general theoretical analysis
on the fragmentation of composite materials has been conducted by Kobelev (1990) in
which three-dimensional cases are discussed. However, the basic concept of Kobelev’s
investigation, transformation of kinetic energy into surface energy, is in disagreement with
the well known theory [strain energy transformed into surface energy (Griffith, 1920)].

A careful review of the previous models reveals that it is very difficult to obtain a
unified physical understanding from them. Therefore it is natural for the present research
to first focus on understanding the physical basis of fragmentation by employing the axioms
of continuum mechanics. After a new physical parameter for the dynamic process is
determined through theoretical analysis, a field equation is established which is rooted in
transformation of strain energy into surface energy during crack extension. In the geometric
analysis, attention is turned to discussion of geometric constraints, including global and
local constraints on fragmentation controlled by Euler’s theorem and energy consumption.
An example analysed subsequently is focused on the treatment of a single element of a
symmetric branching crack network with one origin.

2. PHYSICAL BACKGROUND

In the subsequent discussion, mathematically speaking, a fragment is referred to as a
topological point set \ of three-dimensional space. A map transforming N to another set
is required to be one-to-one and onto. The physical meaning of this definition is that a
fragment can not be broken. In other words, a fragment is specified as a geometrically
stable structure during fragmentation. As shown in Fig. 1, formation of a fragment is
divided into four states. State I stands for the initial state of no deformation for any
geometric element, the subset of X. The position of a point X in the state is denoted by
the vector X under material coordinates corresponding to the reference configuration x,
X = k(X). State II is just prior to the occurrence of cracks along the boundary o\ of N.
State II is sometimes called the critical state. The appearance and growth of cracks along
N is defined as state III. It is important to note that state IIT actually covers a process
instead of a specific moment. The moment at which a complete fragment forms is defined
to be state IV. This might not occur for a non-closed crack contour. In this case, state [V
represents the arrest of cracks and hence a fragment is not a free body. The position of any
point in states II-IV is described under spatial coordinates by the vector x:

X =X, 1) = 1:(X, 1), (H

called the deformation function relative to the reference configuration. All discussions
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Fig. 1. The four steps of forming a fragment.

throughout the paper are founded on the above division. For a fragmentation event, the
four states do not happen simultaneously for each fragment, this is one of the complex
characteristics of fragment formation.

To understand the conversion of energy from one form to another during fragmen-
tation, it is very important to decouple, if possible, the energy from its previous form. When
the axioms of balance of mass and angular momentum hold for all the points of ¥, the
local statements of the axioms for the balance of linear momentum and energy are written
as (Leigh, 1968 ; Bowen, 1989)

px =divT+pb 2)
and
p(+3%%) = div (Tx) —divq+ px-b+pr. A3)
respectively. In (2) and (3), p is the density of the medium, b the body force density, T the
stress tensor, ¢ the internal energy density, q the heat flux vector per unit area and r is the
heat supply density. The meaning of density above (except for p) is referred to as per unit
mass. Here ““div”’ stands for the divergence of a function with respect to the spatial
coordinate x and “-” on the top of a function denotes the derivative of a function with
respect to time ¢. Scalar multiplication of eqn (2) by x produces

px+% = 1px’ = x-divT+px-b. )

Subtracting (4) from (3) leads to

pé = div(Tx) —x - div T —div q + pr. (5)

Since
div (T%) = tr (TL) + % -divT (6)

and
tr (TL) = tr [T(D+W)] = tr (TD) +tr (TW) = tr (TD), %)

eqn (5) becomes

QAS 1 :3.H
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pé = tr (TL) —divq+pr = tr (TD) —divq+pr, (8)

where L = grad x(x, 1) is the velocity gradient at (x, 1), D = (L+L")/2 the stretching tensor
and W = (L—L')/2 the spin tensor. Equation (8) illustrates that the rate of the internal
energy can be separated from the total energy due to the decomposition of the work rate
div (Tx) per unit volume into two parts which alter the kinetic energy and the internal
energy. Different forms of energy balance can be obtained by integrating eqns (3), (4) and
(8) in the volume region %(N, ¢) from the initial time 7, to the current time t. The kinetic
energy E, is of the form

Ek=f dtj %p?dv=f dtf (x+divT+px-b) do, 9
ty x(N.1) ! XN 1)

o

and the internal energy E; is written as

t t
E = J. dtf pédv = j dtj‘ [tr (TD) —divq+ pr] dv, (10)
fo (R, 1) to AR, 0)

where the total energy E, = E, + E; becomes

E = J‘ dtj {div (Tx)—divg+px-b+pr] dv
i X(W. 1)

o

=J dzj (T)‘(—q)-ds+J dtf (px -b+pr) do. (11)
I O (N 1) to (N 1)

Here (9)-(11) are universal identities for any time interval and any spatial region.

In terms of pure kinetic energy and internal energy, the measure of E, and E; is
meaningful only with respect to the reference configuration which is instantaneously con-
sistent with the current state. This results since D may not be a pure rate of stretching and
W may not be a pure rate of rotation. This is easily seen by substitution of the polar
decomposition of the deformation gradient F = GRADy,.(X, ¢) = RU into the expressions
for D and W as

D=3FF '+F F) = {RQUU '+U " 'U)R” (12)
and
W =RR"+{R(UU'-U"'"U)RT, (13)

where R is the rotation tensor and U is the right stretch tensor.

When a thermodynamic process is assumed to be adiabatic, in particular, to be a purely
mechanical process of an elastic material, the internal energy E is sometimes called the
strain energy since the constitutive equation for the elastic material can be written as

F.X)"  ouFX)
aF P oF

Ou,
T=pFZ% F, (14)

because of constraint of the entropy inequality — pé+tr (TL) = 0 where ¢ = u,(F, X). Note
that in this circumstance the entropy remains unchanged.

For convenience in the analysis for small deformation, eqns (10) and (11) are written
in the material forms
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Ei=J dtf pRédV=f dzf [tr (TXF) — Divqg + prr] dV (15)
' K(N) ty k(W)

o

and
E = J dtf [Div (TEx) — Divgg + prX b+ pgr] dV
! k(W)

t !
=J dtf (T{x—qR)-ds+j dtJ (prX b+ pgr) dV, (16)
I Ok(R) 1y K(N)

where g = |detF|F'q, pg = |detF|p and Ty = |detF|TF T which is called the first Piola—
Kirchhoff stress tensor.

From (9) and (10), since the kinetic energy and internal energy resulting from the work
done by external loadings are not coupled, their conversion to any other energy form can
be examined independently. To simplify the present analysis, attention is here focused on
an adiabatic process with no dissipation of energy except for surface energy.

One of the major issues for a theoretical analysis of fragmentation is to determine
which energy form, internal energy or kinetic energy or both, is the major source converted
into surface energy. The answer to this question in the present research work is the internal
energy, i.e. strain energy, because :

(a) the fracture between two groups of particles is such an event which causes the loss
of recovery capability of those particles separated by a crack ;

(b) the internal energy does not necessarily depend on inertial effects. In other words,
under static or quasi-static loading conditions, unlike kinetic energy, the internal energy is
not equal to zero;

(c) the previous experimental results support the assertion [e.g. Kobayashi et al. (1980)
and Kanninen and Popelar (1985)].

To understand the physical process of energy transformation during fragmentation, the
crack propagation under quasi-static Mode I conditions is analysed in detail in the following.

As shown in Fig. 2, a uniform pressure o(¢) is applied on the surfaces of a crack with
length 2¢ embedded in an infinite, linear, homogeneous and isotropic medium with unit
thickness and no body force. Each half infinite body is considered here as a fragment. As
t = t;;, o(t) reaches the critical value a(¢,) and the crack begins to grow. From ¢, to ¢y,
only the fraction of work done by o(¢) which is dissipated by the resistance to crack extension
is the significant part for analysis of surface energy. Therefore, during At = t;y — 1y, 6(¢)
is chosen to be just enough to drive the extension of the crack. At ¢ = 1,y, the crack grows
to the maximum a(ty) = a, and arrests while o(z) decreases down to zero at ¢t = ty. The

b 4 A O S A
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L 2 l l 2{a(1)+c) | I 2(25+0) _!

Fig. 2. The initial propagation and arresting states of a straight crack.
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maximum value of a(#) is bounded so that the extension of the crack is self-similar, i.e. no
branching or curving occurs during extension.

Presently it will be assumed that the crack extension is quasi-static and deformation
remains infinitesimal. In this case, the first Piola—Kirchhofl stress tensor becomes a sym-
metric tensor T = Ty. Based on the exact solutions corresponding to static conditions, the
displacement and loading of a crack surface are given in the forms

a(t) = anarbitrary function, 0 <t < ¢,

de

K
a(0) =0, a(ty) =—,

I-11: ¢ (7
20(t)
u(t, x) = (;,( )\/Cz—xz, x| < e,
d
Kq(1)
a(t) = ﬁ‘c» Ki(ty) = Ky, i<t <y,

I-1v: a(t“) = 0, a(tw) = dy, (18)

o) =220 Jla P, M <al)+e,
d

a(t) = an arbitrary function, v St< by,

Kq,
IV-V: a(ty) = 2=, Ki(tw) = Kees 0(tv) =0, (19)

\/ag+c’
20(t ,
o(t,x) = %)\/(ao%—c)zwx‘, x| € ag+c,

d

where K, is the dynamic fracture toughness, K4(¢) is the dynamic stress intensity factor,
K,, is the stress intensity factor as the crack arrests and E, is the dynamic elastic modulus
which should be replaced by (E,/(1 —v?) for plane strain problems where v is the Poisson
ratio. In addition, stress components are equal to zero at infinity and

o(t,x) =0, 0<1<ty, a@t)+c<|x|, (20)
because of the symmetric property of the problem. From ¢ = 0 to ¢,, a fraction of the work
done by the input loading should be converted into surface energy. The value can be

obtained by substitution of (17)—(19) into the right-hand side of (16) and then integrating,
leading to

IE, = j dtj (TeX)-dS = E, + E»+ E; = f K2(t)a(r) de, 21
0 Cr(N) Ed !

where a(¢) is the velocity of crack propagation and

2 n ¢ KZ
E =— 1 o)) dtf Jei—xtdx = 124 c, 22)
Ed 0 —¢ 2Ed

2 [ ante a(z)[a(t)+c1a(r)}
E, =~ d V Xt e
2= g . a(t) tj“mv {a(t) [a(t)+c)*—x"+ a0t dx

!

- 5 Kot O~ Kidl+ - f Ki(Da(n dr, (23)

n
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2 ty ) dg+c 3 5 'anga
Ei;=— 1 o(t)o(t) dt (ag+c)'—x*dx= — (ap+o). 24)
Ed f —ag—c 2E‘d

v

Note that the equation

—af{t)—c¢ x©
J o (1)6(t, x) dx+ f o(1)5(t, ) dx+ lim J (Tex)*dS =0, 0<1<ty
— 0 R

— % a(t)+¢

(25)

is used in the derivations of eqns (21)—(24) where R is the radius of a semicircle with center
located at the coordinate origin.

Equations (22)—(24) show that E| is the work done by a(¢) prior to crack extension,
E, is the work by a(¢) during crack extension and E; is the negative work by a(¢) during
off-loading after the crack arrests. No energy except for surface energy is consumed during
the entire action of ¢(¢). Therefore it results that the term on the left-hand side of eqn (21)
is the surface energy per crack tip. Based on eqn (21), the dissipative rate of surface energy
E(t) for a crack with a single tip can be written as

dE; ,
dt(’) - Eidkg(z)a(t). (26)

Equation (26) is a fundamental formula for analysis of energy balance during frag-
mentation.

After implementing a series of excellent experiments by using the caustic method
combined with the Cranz-Schardin camera system. Arakawa and Takahashi (1991a, b)
discovered a very important constant R*a, the branching criterion of a propagating crack,
defined as

1
E,

where Ky, is the stress intensity factor at the moment the crack branches. However, the
physical meaning of R*ad seems to be a mystery. The explanation given by them is only
based on its unit because it is defined only by experimental data instead of a theoretical
analysis.

Comparing eqn (26) with eqn (27), it is apparent that R*ad is exactly the increment of
the dissipative rate of surface energy, apart from a constant z resulting from the definition
of stress intensity factor, for a given velocity of crack propagation. Thus in terms of both
theoretical and experimental results, the mechanism of crack branching is such that a crack
starts branching when the increasing rate of internal energy in the vicinity of a crack tip is
greater than the critical value of the dissipative rate of surface energy. This results since
more energy needs to be released through formation of new surfaces instead of the extension
of a surface of one crack.

The efficiency coeflicient for work done during state III is introduced as

K2
1+£<1_ ‘;)
E, ao K3,
P : (28)
Ez 1+ ¢ (1 K‘%“) + -2 " Ram dr
a\ K& Kiao ), 1

For a(t) <200 m s~', including consideration of the effect of geometric dependence of
specimens on a(¢), the equation K () = K4 & Ky, holds for many engineering materials
[e.g. sce Kanninen and Popelar (1985)]. In this case, eqn (27) gives
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!

is v i T 5
1E = E, = E Ki(t)a(r) de = E;Kd"cao (29)

t

and then ¢; = 2/3.

Since eqn (29) is exactly consistent with the result obtained by Griffith (1920) under
static conditions, the following conclusion appears to be true. During state 111, the surface
energy consumed due to formation of new surfaces is transformed from internal energy or
strain energy. Under dynamic conditions, the collection of experimental data supporting
the assertion can be found in the literature (Kanninen and Popelar, 1985). Thus ¢; = 2/3
suggests that formation of new surfaces dissipates almost 70% of the work done by external
loading during crack extension. In terms of (9)-(11), the other 1/3 of the work is converted
to kinetic energy which should contain the part transformed from strain energy due to the
relaxation of constraint caused by crack extension.

The solution for a spherically symmetric fluid model obtained by Grady (1982) gives
that E, = 2/3E, and E, = 1/3E,. This means that as an exact description of state III, if
a(t) < 200 m s~', the present result for the energy ratio is in exact agreement with Grady’s
result. Recent theoretical and experimental results [e.g. Englman ez a/. (1987) and Lankford
and Blanchard (1991)] are in agreement with the Grady model.

More general cases are analysed in the following. For simplicity without loss of
generality, the body force is ignored in the derivation. In order to measure the general
nature of surface energy resulting from inhomogeneity and anisotropy of materials, based
on eqn (21) or (26), the surface energy under three-dimensional conditions is defined by

! 0y(s, K.
Es(t) = J dtJ‘ y(satﬂj dS, Kdg = Kdg(xa o, t) Y SN L, (30)
1 Sp(N, 1)

where y denotes the density of surface energy at the point X with the normal o« = a(X, ¢)
on the fractured surface, § is the velocity of surface extension of the crack, S; is the fractured
area of a fragment and K, is the generalized stress intensity factor with inhomogeneous
and anisotropic properties during crack propagation. Theoretically speaking, for a homo-
geneous and isotropic material one has K, (X, o, 1) = Ky4(¢) and the dissipative rate of
surface energy is of the form

(. K, dy(s. K dyGs, K,
j y(8, Kag) ds:f L(S_d)ds=f gMds=$v(S,Kd). (31)
S SN.1) SHN.1) ds

Here s and inertial effects on K are assumed to be uniform for each portion of the entire
fracture surface. Substitution of (31) into (30) leads to

E(t) = J (5, Kp)s dt. (32)

"

Equation (32) has the same form as (21) or (26). It turns out from (32) that even for crack
extension with low velocity, neglecting effects of inhomogeneity and orientation, the surface
energy may not be a linear function of surface area. This is one of the complex characteristics
in the analysis of fragmentation of composite materials. For a homogeneous and isotropic
material with § < 200 ms™', y(5, K4) = 7, is a constant. This means that the surface energy
E (Sg) = y4Sk is a linear function of the fracture surface S which provides an indentity
Sk, E.(Sk) = E((Sg,, ) Sk, between two arbitrary fragments with the surface areas Sg and
Sk

i+

[

Based on the preceding analysis, crack extension is presently considered to be possible
if and only if the input energy causes the strain energy in the crack tip region to be greater
than or at least equal to a certain value. In other words, the strain energy must be in the
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Table 1. Transformation of strain energy into surface energy

E,/AE, Materials Specimens ¢ (ms~') Authors and date
1.04 Homalite-100 M-CT <250 Kobayashi et al. (1980)
0.98 Polycarbonate M-CT <500 Kobayashi er al. (1980)
0.97 — DCB 104 Kanninen and Popelar (1985)
0.98 Araldite DCB 180 Kanninen and Popelar (1985)

critical state of dynamic equilibrium and an increment of strain energy on dynamic equi-
librium is consumed by surface energy during crack extension. Actually the energy deter-
mined by eqn (23) is exactly the part which is greater than the critical value. The math-
ematical expression of this statement is given from eqns (10) or (15) and (30) by

Iy g fiv fiv
E = j dtj Mds = J dzj tr(TD) dv = f dr J tr(TRF) dV.  (33)
' sty O i R0 " k()

The strain energy stored is considered to be converted into other forms in the following
two manners: (1) it is dissipated by overcoming the negative work done by off-loading as
indicated ineqn (24) ; (2) it is transformed into kinetic energy due to relaxation of constraints
on the boundaries of the fragment caused by crack extension. Equation (33) is hereafter
called the field equation for formation of a fragment.

The experimental data listed in Table 1 is the ratio of surface energy to the decrease
AE; of strain energy at the moment of crack arrest, obtained by Kobayashi er al. (1980)
and Kanninin and Popelar (1985). The proximity of this ratio to one is in agreement with
the fundamental assumptions noted earlier in the theoretical analysis.

Obviously, it still is a difficult task employing eqn (33) to make quantitative analysis
of fragmentation because state III is involved in a series of almost formidable topics for
initial and boundary value problems. For the sake of brief discussion, based on eqn (33),
a simplified model is introduced in the following.

It is an acceptable assumption (even for the occurrence of large deformation at state
IT) that deformation is infinitesimal for state III because the material has reached its limit
state. In this circumstance, x,  and o become

X = % (X, ty), a=aX, ty) and x(N, 1) = x(N, 1yy), (34)

for 1, < t < tiv. In terms of (34), the field equation (33) becomes

t
E(t) = J dvj tr(TD) d¢, h <t . (35)
2N, ty) !

The term tr(TD) is expanded at ¢ = ¢, as a Taylor series

oP 1 9°P
tr(TD) = Py+ = (t—ti)+ 5 3 (= tu)*+ - (36)

where P, is introduced for convenience as follows:

t(TD)| &Py
or" T

tr(TD)|,, = Py = Py(x,#;) and n=12..). 37

i

Substitution of (36) into (35) leads to
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oP
E(1) = (t—ty) Py do+3(1—1y)? e
2N 1) xoxan 01
—(t—t 3 y .
* 3-2 (t=tu) XN ) or? dv+ (38)

The physical meaning of E () implies that the series expansion (38) is convergent. E(t) is
an increasing function of ¢ for ¢, < 1 < tyy,i.e. dE(¢)/dt > 0 (¢, < t < t1y). Ast = ty, E(1)
reaches an extreme value, a maximum, which implies

dE,(1) f j Py ) 2*Py
= P, dv+ At —dv+ = (Aty)” =0
dr t=ty (N, 1) ! " (N 1) ot 2! ( “l) AN ) ot
(39)
and
d’E,(1) j Py f oP,
, = ——dv+A 3 <0, 40
d" =1ty (N 1) 0 i AN ) ot- Y ( )

with Aty = fiv — 1y, [t follows from (39) that Aty is controlled by the stress state, the strain
rate and the geometric parameters of a fragment and its value reflects a series of dynamic
characteristics of the fragmentation process. dE (t)/dt > 0 (t;; < t < ty) and (40) are two
important constraint conditions for this model. After Aty is calculated by use of eqn (39),
the surface energy dissipated by formation of a fragment is given from eqn (38) as

Py dl"*‘é(Atm)zj oPy

XN ) ot

E(Se)i=i, = AIIIIJ

KN, 1)
(Aty)? i Ldo+ - (41)
32' xm..,az '

The physical meaning of eqn (41) is that the incremental loss of strain energy from a
fragment during state III is consumed by surface energy.

When the volume ¥V = (¥, ¢,;) of a fragment is very small, one might assume that Py
and (0"P,/0t") are constants within the fragment, and the first three terms of eqn (39) are
truncated for calculation of #;y. In this case, Aty is determined by

(P eny \/—67%.) Py
Aty = (512 ) [—‘a; + ot —2P I > 0. 42)

This equation should satisfy conditions dE,(¢)/d? > 0 (1;, < ¢t < tv) and (40) as constraints
on the approximation. For a homogeneous isotropic material and § < 200 m s™', the first
three terms of eqn (41) yield

AY
_5 —= [AIIIIP“ + (Atlll)

70

’p
B ] (43)
with E; = y,Sr and A, given by (42). Theoretically speaking when the physical parameters
on the right-hand side of eqn (43) are known the geometric parameters (the surface Sg and
the volume V of its left-hand side) can also be determined. However, so far the discussion
on fragmentation has not provided any information about the shape of a fragment or the
fracture pattern of the entire fragmentation process in part because there are infinite
solutions to Sg for a given V or infinite solutions to V for a given Sg. It follows that it is
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necessary for the complete description of fragmentation to examine the principles relevant
to the geometric configuration of fragmentation. This is the topic of the next section.

3. GEOMETRIC CONSTRAINTS

The goal of this section is to show that deterministic geometric constraints exist during
fragmentation and play an important role in geometric analysis of crack networks and the
prediction of favorite shapes for fragments. The following discussion contains two aspects:
global and local constraints.

3.1. Global constraint

For any finite solid body with arbitrary shape, its curved boundary surface can be
categorized by Euler’s constant (Blackett, 1967 ; Meyerhoff, 1992). Euler’s constant remains
invariant for the surfaces of two bodies provided that one is homoemophic to the other. In
other words, it depends only on the topological structure of a closed surface. Mathematically
speaking, the crack network formed during fragmentation on the surface of a body is a
subdivision of this surface into a polyhedron. Therefore, the geometric parameters of all
fragments on the closed surface obey the Euler theorem

Xe = No—N,+N,, (44)

where g is the Euler characteristic, N, is the number of crack junctions on the fracture
surface, N, is the number of cracks and N, the number of all fragments. The value of
varies with the characteristic of the surface. In particular, g (sphere) = 2, xg (torus) =0
and yg (two holed torus) = —2, ..., xg (n-holed torus) = 2 —2n (Meyerhoff, 1992). Several
applications are introduced below.

From the idealistic point of view, fragmentation of a spherical shell subjected to
uniform internal pressure is expected to produce fragments with the identical size, shape
and with the same number of cracks emanating from each vertex since both the geometric
and physical conditions are spherically symmetric. Fragmentation of a spherical shell in
this manner corresponds to a regular subdivision in a topological sense. A subdivision of
a surface into a polyhedron is regular if each face has the same number of edges and each
vertex has the same order (Blackett, 1967). The order of a vertex is the number of times
the vertex appears as the end of an edge.

Constrained by a regular subdivision, Ny, N, and N, are related by

jN0=2N1, kN2=2N|, (45)

where k and j mean that the faces of a regular subdivision have k edges and the vertices
are each of order j. After substitution of (45) into (44), eqn (44) is simplified to

2 2
e = ;.—H‘ic' N,. (46)
For a sphere, (46) gives
4k
Ny=r—7>-—, 47
* 7 20k +j)—jk “n
Ny =52 (48)

T2kt —jk’
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= Y . (49)
2(k+j)—jk

N,

All the solutions to eqns (47)-(49) for a sphere are listed as follows:

Ny k N, 2

i) (N, ]=|k . ) [N =] i
N» 2/ i=2k=nN, N, Jli=nik=2
N, 4 N, 8

() [N, |=|6 , W N =12 ,
N, 4/ i=3.k=3 N, 6/i=3k=4
Ny 6 Ny 20

vy (N, =12 , i) [N, =130 ,
N, 8 /i=dk=3 N, 12/j=3.k=s

Ny 12

N, 20/ j=5.k=3

Solution (i) here is a trivial case. Solutions (ii)—(vii) are illustrated in Fig. 3. Note that the
definition of a regular subdivision does not have any requirement on the size and shape of
a fragment appearing on the surface of a sphere. A solution with practical interest needs to

S
&

i) (iii)

&
D

(iv) v)

&
&

(vi) (vii)

Fig. 3. Six regular subdivisions of a spherical shell given by Euler’s equation.
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Fig. 4. An irregular subdivision of a spherical shell.

have a determinable dimension. Here the limitation on the surfaces of fragments is that the
size and shape of each surface is identical to one another.

One of the most significant properties of a regular subdivision for a sphere is that since
both Ny > 2 and N, > 2 a finite number of solutions (actually five) for Ny, N, and N, exist.
Solutions (iii)—(vii) illustrate that because of the constraint of the Euler constant, if a
spherically symmetric condition holds until the moment of fragmentation of a sphere,
fragmentation at that moment will only produce at most 20 fragments. If N, > 20, fragments
with uniform size and shape will never appear during fragmentation of a spherical shell
subjected to uniform deformation. In real fragmentation processes defects in materials, errors
in manufacture and variations of loading influence the ideal symmetry. Therefore, non-
uniform local fracture affects the fragmentation patterns. Two other possibilities are that
(a) the initial fracture pattern is controlled by the regular subdivision and then a multiple
fracture process takes place in the subsequent stages ; (b) the vertices which serve as crack
sources are regular but fragments are not regular. An example of case (b) is shown in Fig.
4. Here note that each vertex is identical while some fragments have six edges and others
(12 pieces) have five edges. In the experimental photographs achieved by Slate et al. (1967),
visible parts of the instantaneous crack network on a spherical shell of hard copper beryllium
have a consistent pattern with case (b) under internal blast pressure.

When % is replaced by zero which stands for a torus, the result of eqn (46) for the
regular subdivision is substantially different from the result of a sphere. In fact, (44) and
(45) lead to

2 2

which shows that an infinite number of polygons (subdivisions) exist for Ny, N, and N,
corresponding to three casesof jandk (k =3, j=6;k=j=4;k =6, j=3). Anexample
for j = k = 4is illustrated in Fig. 5. This implies that the uniform fragmentation of a torus
has a less restricting constraint as compared to a sphere since the number of polygons is

Fig. 5. A regular subdivision of a torus given by Euler’s equation.
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not limited. Figure 6 is an experimental result which demonstrates the global constraint on
uniform plane fragmentation and is based on solution j = k = 4. This experiment was
conducted using the following procedures:

heat a glass plate gradually to 900°F;

hold the plate for 1 hr at this temperature ;
decrease the temperature gradually to 750°F ;
rapidly cool the plate in water.

It is evident from this figure that the geometric constraints on plane fragmentation are in
perfect agreement with the theoretical predictions. The plane fragmentation as shown in
Fig. 6is consistent with Fig. 5 since the subdivision of a torus is equivalent to the subdivision
of a plane. Hence the idealized model is directly applicable to physical fragmentation
problems.

In evaluating the surface energy, the size and shape of fragments, and other parameters
produced by fragmentation of a shell, it could be very significant to analyse the global
constraint. Al-Hassani and Johnson (1969), Johnson (1972) and Kobelev (1990) seemed to
be unaware of the special constraints on fragmentation of a spherical shell, so there are
several unreasonable assumptions in their papers. Kobelev (1990) assumed that the shapes
of fragments are circular and rectangular corresponding to uniform internal pressure. Both
shaped are incompatible with respect to the global energy field (assuming the fragment
number N, > 6). In fact, it will be shown below that a circular fragment is the least probable
shape.

When a point load with a moderate speed acts on an untempered glass plate or shell
of arbitrary shape, even for general boundary constraints, the fracture pattern caused by
the impact always consists of a group of radial cracks with possible secondary “‘ring” cracks
which converge towards the loading point as shown in Fig. 7. Careful observation indicates
that the radial cracks divide the region close to the loading point into almost equal geometric
parts. This common phenomenon which can be seen everywhere is not limited to brittle
materials. Similar fracture patterns for ductile materials such as copper, aluminum and lead
are also produced when geometric and loading conditions are symmetric (Ghosh and
Travis, 1979). It is difficult to explain the fragmentation process in detail using traditional
ideas. In this case, the regular subdivision (i1) shown in Fig. 3 gives a reasonable illustration.
The vertex of the faces of subdivision (ii) corresponds to the loading point, the region near
the loading point is a portion of a sphere. Under the constraint of the Euler characteristic,
the possible subdivision only allows the radial crack pattern. As a matter of result, this is
an ideal example of the global constraint because the energy field completely matches with
the fracture pattern.

3.2. Local constraint
When material constants of a medium are given, a key geometric parameter for
calculation of surface energy is the fracture surface area of a fragment. The essential step

/<

Point loading

Fig. 7. A crack network on the solid surface caused by a point loading.
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Fig. 6. Uniform fragmentation of a glass plate.

Fig. 8 Small fragments of a thin glass shell.
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Fig. 10. Crack networks of a glass plate with three layers.
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for this is to find the shape of the fragment. As indicated in the above section, classical
approaches will encounter great difficulties in treating the problem. In the present work,
principles of energy consumption are applied to analyse possible geometric constraints on
the shape of the homoemorphic family of a fragment at a local level.

The mass or volume of a fragment can be easily measured with the use of ordinary
instruments. Therefore emphasis here is placed on calculation of the surface area of a
fragment with a given volume. The surface area corresponding to a given volume has
infinitely many values which, mathematically speaking, consists of a group of homeo-
morphisms to a spherical surface. The interest for quantitative analysis of fragmentation is
the extreme value of the surface area. This is a classical variational problem. It is easy to
prove that the surface area with a given volume does not have a maximum unless more
constraints are specified and hence only the minimum of the surface area is available
through a direct variational approach.

For a two-dimensional problem relevant to fragmentation of thin plates with uniform
thickness, the length of the perimeter which stands for fracture surface area is the desired
parameter. Under polar coordinates, the minimum perimeter with a given area is determined
by minimizing the integral

=j~/(dr)2+(rd9)2+lj§r3 d6— J(Cl dr+c, do), &1

where 4 is the Lagrangian multiplier and ¢, ¢, are the constants of boundary constraints.
The condition (81/06) = (¢1/0(d6)) = 0 (Kimbal, 1952) gives the differential equation

@_ 2C2—Z.r2
dr . /4r?—Qc,—ar?)?

(52)

Without loss of generality, ¢, is taken as zero for convenience, and the solution to (52) is
of the form

2
—cos(0—ay) |,

r=1

(53)

where «, is the integral constant. Equation (53) is the polar equation of a circle with the
radius 1/4. Its physical meaning for fragmentation of a plate is that, of fragments with a
given area, a circular fragment dissipates the minimum internal energy because of the
minimum fracture surface. For a more elaborate investigation, the perimeter L of a regular
polygon with a given area 4 and N, edges of equal length is written in the form

4N, taan\/Z, (N, = 3). (54)
1

Note that L is a descending function of N,. When N, = 3, L has the maximum L, =

\/ 12\/3\/ A and when N, — oo L tends to the minimum L, = /4nﬂ, and their ratio
18 Ligax/Liin = 1.286 or Li/Ly. = 0.778. If the material of a fragment is homogeneous
and isotropic as well as § < 200 m s~', combining eqn (54) with eqns (41) and (43) results

in
1 i
—_ Jan, tani Purv (55)
\/Z Yo

wlfﬁ
hxll‘*

with
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i a'pP
(Aty)? '"/';'3[! + (56)

Q

ap,
=A 1 pI L
Pu-v tuPu+2(Anhy) a1 + 300

The ratio r; = L/\/Z (i=N,) and the increment o = (r;—r,, )/r;,,, varying with the
number of edges, are listed in Table 2. This reveals that there are substantial decreases in
perimeter length (and hence surface area) as the number of sides increases. It turns out
from (55) that when a fragment is small, the surface energy consumed by a fragment with
a given area is inversely proportional to the number of its edges.

From the point of view of strength theory, the failure event of a material usually takes
place at the moment when the energy stored within a region reaches a critical value, i.e. the
highest level. Table 2 illustrates that there are two big jumps between a quadrilateral and
a triangle (14%), and between a pentagon and a quadrilateral (4.9%). This implies that a
triangle and a quadrilateral are the most favorable shapes (in terms of surface energy
absorption) for a small fragment. When N, is greater than seven, the increment of energy
is less than 1% so a small fragment with more than seven edges will not frequently appear
during fragmentation, while a circle is the most improbable shape for a fragment. This may
be a significant reason why circular fragments are rarely seen. This result illustrates the
advantage created by considering a combination of the energy constraint on a fragment in
addition to its geometric structure.

To check the theoretical results, a series of experiments and direct observations have
been carried out by the authors. In these experiments 15 types of plates and shells of
standard window glass, glass bulbs and clay ceramics were taken as the experimental
materials and they were each broken into many fragments with different sizes by arbitrary
impact loadings. (The impact loading was applied with a standard hammer. The specimens
were hit repeatedly with the hammer until the fragments were reduced to a certain size.
No attempt was made to quantify the magnitude of this impact force since this result was
not needed presently.) The fragments were categorized into four size groups by sieves.
Experimental data revealed that when the average mass or volume of each fragment of a
group is less than a critical value or, more accurately, a critical band, at least 70% of the
fragments in that group had triangular or quadrilateral shapes. Their typical profiles are
shown in Fig. 8. It is evident from this photograph that most fragments have three or four
edges (triangle or quadrilaterals) and this result is exactly consistent with the prediction in
Table 2. In most cases, considering all fragments of different sizes, the maximum number
of edges of a fragment was less than seven. No circular fragment ever appeared. Several
experimental results are plotted in Fig. 9 where r, is the percentage of the number of
triangular and quadrilateral fragments to the total number of fragments of each group and
m is the average mass of a fragment. The results convincingly indicate that as the fragment
size is reduced, most fragments attain a triangular or quadrilateral geometry.

Further experimental verification of present predictions is shown in Fig. 10 which
displays crack network patterns of a fractured glass plate with three layers (safety glass).
It is clear that there is no fragment which has more than six sides. It is necessary to point
out that this is not an isolated phenomenon, but exists everywhere in fragmentation events.

Table 2. Relation between two-dimensional shape and

energy

N, r; d (%) Shape

3 4.559 — triangle

4 4.000 14.0 quadrilateral

S 3.812 4.9 pentagon

6 3.772 24 hexagon

7 3.672 1.4 heptagon

8 3.641 0.8 octagon

9 3.620 0.5 nonagon
10 3.605 0.4 decagon

infinity 3.545 [.7 circle
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Fig. 9. Experimental results for the ratio of the number of triangular and quadrilateral fragments
to the total number of fragments.

Similarly for three-dimensional problems, variational calculations show that the
spherical surface is the minimum area for a given volume. The physical meaning is that of
all the possible fragments with the same volume, the fragment with a spherical shape
consumes the minimum energy. This may be the reason why there exists a unique minimum
in the model given by Grady (1982). To compare the spherical surface with surfaces of
other shapes, the regular tetrahedron, cube, octahedron, dodecahedron and icosahedron
(all of which can be obtained by affine mappings from solutions (iii)—(vii) of Section
3.1) are chosen. The ratio of surface area to (volume)?® r; = Sg/V¥? and the increment
0= (ri—ri)ri.; i=N, j=2,2,4,8, o) are given in Table 3. Note that the ratio of
the maximum to the minimum is equal to Sy /Smin = 1.490. It follows that the general
tetrahedron, pentahedron and hexahedron (pentahedron and hexahedron fall between the
tetrahedron and cube) are the most probable shapes because of the high jump in energy
level. Similarly, the spherical fragment is the most improbable shape. If one picks up any
fragment and counts the number of its segment surfaces, the data obtained is in agreement
with the theoretical analysis.

Table 3. Relation between three-dimensional shape and

energy

N, r; S (%) Shape

4 7.206 — tetrahedron

6 6.000 20.1 cube

8 5.719 49 octahedron
12 5.312 7.7 dodecahedron
20 5.148 32 icosahedron

infinity 4.836 6.4 sphere
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(a)
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28,
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()
A single clement of
crack network

Fig. 11. Three examples of a branching crack. (a) A two-branch crack. (b) The multibranching of
a crack. (c) The diverging of a crack.

4. AN ILLUSTRATIVE EXAMPLE

To gain a clear physical understanding of the fragmentation mechanism, the modified
equation (41) of the general field equation (33) is applied to analyse the branching problem
of a two-dimensional crack under quasi-static conditions. For this topic, a large amount of
successful experimental data is available for comparison with theoretical analysis [e.g.
Schardin (1959) and Arakawa and Takahashi (1991a, b)]. From known experimental
results, branching of a single crack may be categorized into three cases: (a) a two-branch
crack ; (b) a crack network formed by a group of two-branch subcracks; (c) a crack with
more than two branches, shown in Fig. 11(a—), respectively. It is of interest to note that
case (b) consists of a chain of case (a) and case (c) is the intensified development of case
(a). So case (a) is considered an element of a crack network and it is examined in detail as
follows.

A two-branch crack with the symmetric angle 6, in Fig. 11(a) is assumed to synchron-
ously originate from a semi-infinite stationary crack embedded in an infinite homogeneous
isotropic elastic plate subjected to the dynamic normal point force f(¢) per unit width
determined by

£(1) = fusin (g ,’> 57

m

where f, is the amplitude of f(¢), as shown in Fig. 12. In this circumstance, the criterion
(26) for the branching of a propagating crack might not readily be adopted because of the
simplification of the model. As compensation for this it is straightforward to define that
the crack branches as t = ¢,,. The fan sector A0 B with radius R formed by the two branches
of the crack is chosen as a fragment, as illustrated in Fig. 12(a). As the displacement
gradient is small, the constitutive equation for the material (Hooke’s law) is of the form

Tr = itr(e)l+2pe = TL, (58)
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Fig. 12. The model of a branching crack.

where e is the infinitesimal strain tensor, and 4 and u are the Lamé constants. Using eqn
(58) and tr(TLF) = tr(Tré), one can obtain

f tr(TD) dv = J tr(Tré) dV. 59
AN 1) K(N)

It follows from (59) that as the deformation is small tr(TD) can be replaced by tr(Tré) in
eqns (36)—(41) without any influence on the result. For a plane stress problem, tr(Tgé) is
written from (58) as

1
tr (TRe) = E [o_v.\'d-.\'x + Gy dyy - V(O'xx O.-yy + o-,rydxx) + 2(1 + v)axyd'xy], (60)

where T;; = 6,; (i, j = x, y), E is the elastic modulus and v is the Poisson ratio.
Before the crack branches, the stress and strain field can be determined by the complex
Westergaard function which is of the form (Irwin, 1957)

_sw 1
4 ‘T%ﬁ\ﬂ’ ©h

where z = x+iy = r(cos 8+i sin 6). The effect of the stress intensity factor Kj; for Mode
IT on the extension of each branch is ignored here for conciseness of discussion. In fact, the
latest results by Isida and Noguchi (1992) reveal that for a symmetric two-branch crack,
at the branch tip the stress intensity factor of Mode I is the dominant one for branching
angles 20, < 60°. Inserting o,, = ReZ,+yIm(dZ,/dz), o,, = ReZ,—yIm(dZ,/dz) and
g, = —yRe(dZ,/dz) into (60) leads to

2 b J(r0)

(Td) = 2 o~ F(DF(), G)

with

1 r 3 b @Y r* rb 1 .,
J(@r,0) = R [(1 —v) <R00529+ 1—ecos§> +(1+v) (2F + R Ecosf)+ ZR,,,)sm 0],
(63)

2 2
s _ (Y r b 2) 4
R,g—<R> +2RRcos0+ (R . (64)
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Corresponding to eqns (36) and (59), eqn (62) produces

u(Tee)| &Py _ 2 b J(r,60) d"(fiSu)

o |er T @ “ERR R e =0LZe). (69
where
d"(fuf) _ dS@)Sf )
dm— dr . (66)
Substitution of eqn (65) into (39) leads to
dE(1) 2 b ; d(fufu)
T ﬁi[f"ﬁ'“’"' ar
1 2 d’(fufw) b R dr
+ 2*!(Alm) T+ " do . J(r, G)E = 0. (67)

Note that in eqn (67) x(X, ;) = k(X) is replaced by the area: —0. <0 <0,0<r<R
Equation (67) is truncated after three terms to evaluate Az, as

Aty = B - |:cos <ﬂ> + \/l +sin® <E~“>:| (68)
R <7Uu> I -
nsin

m

The positive sign is reasonable for the present analysis. If the velocity of crack propagation
is low, the surface energy contributed by the fragment during the branching is given as

T
E(ty) = EchR- (69)

In light of eqns (65) and (69), eqn (41) gives

S ” ), G PRI [* [ 1%
Rﬁmﬂm”'ﬁ'ﬁ* A T oe ae ), ), 0%

(70)

The formation of a two-branch crack is a special consequence because it requires that the
new surfaces formed by the two branches are just sufficient to consume the extra part of
the energy over what is needed for extension of a single crack. This special characteristic
should be refiected in some physical parameters, such as Afyy,.

As 1y = t,, eqn (68) provides Aty = 0, and then eqn (70) gives R = 0. It follows that
if the maximum loading is only large enough to drive a crack to the critical branching state
then the extension of the crack may be self-similar or may cause an unsuccessful bifurcation.
It results from the meaning of ¢, = 1, that after a crack starts branching, if Ar,; = t,,— 1,
or fyy = t,, then the branching crack arrests due to the energy constraint controlled by the
external loadings. The solution of eqn (68) for the condition ¢y = ¢, is a specific value given
by t/t. = 0.3381. A set of known experimental data listed in Table 4 also consistently
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Table 4. Experimental data of ratio #;;/t;y

In ty 0.
No. (us) (us) th/tw (degree) Materials Authors and date
1 102 212 0.4811 53.4 Homalite-100 Ramulu ez al. (1984a,b)
2 83 174 0.4770 8 Polycarbonate Ramulu and Kobayashi (1985)
3 70 150 0.4667 ~60 Homalite-100 Arakawa and Takahashi (1991a)
4 77 189 0.4074 ~60, Homalite-911 Arakawa and Takahashi (1991b)
5 98 196 0.5000 ~52 Epoxy Arakawa and Takahashi (1991b)

exhibits that ¢/t seems to be a constant for the two-branch crack. The error between
theoretical and experimental results is mainly attributed to the simplification of the model
which considers an approximate quasi-static stress and strain field instead of the real
dynamic field of a propagating crack, and to the neglect of the effects of shear stress on the
branched cracks. However, the simplification in the analysis here does not cause any large
deviation from experimental results. The constraint conditions dE(¢)/dz > 0 (#;, < t < t}y)
and (40) hold for this illustrative example.

When Aty < tn—ty or ty > 0.3381¢,, each of the two branches of the crack would be
driven by external loadings lower than the maximum value £, to produce two or more new
branches so that a multibranching crack network may form as shown by the experimental
photographs given by Schardin (1959) and Ewalds and Wanhill (1985). In addition,
Aty > t,— 4y or 4 < 0.33811,, is the other important case which may lead to confusion with-
out careful analysis. In fact, the high rate of energy input caused by the high loading rate
needs to be balanced by the formation of more than two new surfaces. Therefore when an
analytical model is limited to a two branch crack, the branching time f,y should naturally
be greater than the maximum time ¢, of the model. Hence there may be two possibilities
concerning the ratio ¢/t for diverging cracks from a single source. First, ¢,,/t,, < 0.3381
still holds for the divergence. This case is recorded by Arakawa and Takahashi (1991b). In
their experiments, when the branches of an extension crack are more than three,
ti/t = 0.1482 is much less than the uniform average value of ¢,/t,, = 0.4664 for the two-
branch cracks listed in Table 4. The second case is that the ratio remains unchanged but
the branches of a crack are more than two. In summary, the higher the loading rate, the
larger the number of branches of a crack.

Having discussed that eqn (70) holds only for ¢, = 0.3381 ¢, or ¢,y = ¢, substitution

of (57) into (70) gives
0 2482 b
s (L[ [ e

In light of the expression for the stress intensity factor given as K; = 1/n,/(2/b)f(¢) for the

crack in Fig. 12, f(#;) must satisfy the inequality f(#;) = nK,./b/2. Introducing the
dynamic coefficient & into the inequality leads to

b
Sf(ty) = nkKy \/; (72)

Here & is expected to contain the inertial effects on K, including the velocity of crack
propagation. From eqns (57) and (72), f,, is given by

knK,, b

Jo = ——ﬂ—\[g (73)

sin (E tﬂ)
21,

Substitution of eqn (73) into (71) leads to
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Table 5. The dynamic coefficient &k varying with /R and 8,

0. (rad)

h/R 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
0.25 7.163 6.185 5.511 5.007 4.610 4.285 4.012 3.777 3.571
0.50 5.551 4.795 4.274 3.886 3.581 3.331 3122 2.942 2.785
0.75 4.988 4.232 3.773 3.432 3.164 2.945 2.762 2.605 2.468
1.00 4.436 3.920 3.496 3.181 2.934 2.732 2.563 2.419 2.293
1.25 4.304 3.720 3.319 3.020 2.786 2.596 2.436 2.300 2,181
1.50 4.142 3.580 3.195 2.908 2.683 2.501 2.348 2.217 2.104
1.75 4.022 3.477 3.103 2.825 2.608 2431 2.283 2.156 2.046
2.00 3.930 3.398 3.033 2.761 2.549 2377 2232 2.109 2.002
2.25 3.857 3.335 2977 2.711 2.503 2.333 2.193 2.072 1.968

b 2 0, R dr
0.9676k2 | = do | Jor6)= =1, (74)
R/ Jo 0 R

thus giving

N2 [0 R drl-2
k=1.017[(§> L dOL J(r,H)ijI . (75)

It follows that the dynamic coefficient k is a function of b/R and 6.. The numerical results
listed in Table 5 for v = 1/3 show that k is always greater than one. This is in agreement
with its physical meaning and all known experimental results. Additionally, it is apparent
from Table 5 that the formation of a large branching angle is more likely than the formation
of a small one when 20, < 60°.
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